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Abstract
Lipid bridges are lipid membranes linking two parallel, adhesive walls. For
appropriate values of both physical and geometrical parameters, there are two
types of such bridges, which look quite different from one another. Here we
apply a general condition valid for two-dimensional lipid architectures to show
that when the elastic energy density of the lipid membrane is quadratic in the
mean curvature, both these bridges are locally stable. Moreover, we give a
criterion to decide about their global stability when they happen to coexist at
equilibrium.

PACS number: 87.10.+e

1. Introduction

The equilibrium of lipid membranes still offers many problems that are relevant to the
mathematical modelling of elementary biological structures.

Amphiphilic molecules are the basic constituents of lipid membranes: they are elongated
molecules with a polar, hydrophilic head and a slender, hydrophobic tail. When dispersed in
water, the tails of these molecules tend to be packed together, screened from the surrounding
water molecules by two families of hydrophilic heads organized in adjacent layers. One
of the basic structures that can thus be created is a lipid bilayer, consisting of two arrays of
molecules with their heads facing the environment (see the sketch in figure 1). Mathematically,
lipid bilayers are described as surfaces; they can easily be deformed and take on different
conformations, among which are both compact surfaces called vesicles and hollow cylinders
called tubules.

Despite the wealth of studies on the statics of lipid membranes, for which a standard
reference is [17], general analytical results concerning the stability of the equilibrium
configurations are still missing: essentially, a few special conditions are available, valid either
for special membrane shapes [6–9] or within a restricted class of deformations [16]. Only
numerical treatments are available for general equilibrium shapes, such as that presented
in [4]. Luckily, both vesicles and tubules seldom exhibit a multiplicity of equilibrium
configurations under the same external conditions, which would make it mandatory to
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Figure 1. Sketch of a lipid bilayer.

have a criterion to select the shapes that are at least locally stable. Though in [7] the
second variation of the elastic energy functional for a lipid membrane has been computed
in detail, the problem remains of proving under what conditions this variation is positive
definite for all admissible perturbations of an assigned equilibrium configuration of the
membrane1. To our knowledge, such a study of the local stability of lipid membranes is
still lacking. We derive in the present paper a general local stability condition valid for a two-
dimensional model and we apply it to an equilibrium problem that indeed exhibits more than
one solution.

We build upon a method that delivers the exact solution for the equilibrium problem of
a lipid membrane in two space dimensions (cf [10–12]). Though this method is especially
relevant to straight tubules, similar attempts have also proved useful in the study of vesicles
in three-dimensional space (cf [13, 14]). Here we study other possible architectures of lipid
membranes, which arise when they bridge two adhesive walls. For tubules, these structures
are indeed arches, which can be of two different types, depending on whether the membrane
creeps on the walls or not.

We show in section 2 how to establish a criterion for the local stability of the equilibrium
configurations of a tubule. In section 3, we illustrate the different equilibrium bridges and
determine the critical values of the constitutive parameters that make one prevail energetically
over the other. In section 4, we consider a different lipid architecture, where a lipid bridge
partially adheres to two misaligned walls; the bridge’s ends are further subject to concentrated
loads that prevent the bridge from gliding along the walls. Finally, in the appendix we present
an alternative analytical method to obtain equilibrium solutions for tubules and, as a curiosity,
we show how two classical problems solved by Euler can be given a possibly shorter solution
when attacked by this method.

2. Local stability

Lipid membranes are elastic, in the sense that their free energy depends on their curvature.
Moreover, the molecules in a lipid membrane usually lie in the direction of the unit normal
ν to the membrane: sometimes, they can also be oriented by an external agent, such as a
magnetic field. Thus, in a general model for lipid membranes the free-energy functional is
written in the form

F [S] :=
∫
S
f (H,K,e · ν) da (2.1)

1 To be assured of the technical difficulty of this problem, the reader should heed that the local stability of the sphere
for the area functional, which is much simpler than the elastic energy for a membrane, was fully proved less than two
decades ago [1].
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Figure 2. The curve c models a lipid membrane in two space dimensions.

where S is the surface representing the membrane, a is the area-measure, f is a smooth
function of the total curvature H := σ1 + σ2 and the Gaussian curvature K := σ1σ2 here
expressed in terms of the principal curvatures σ1 and σ2 of S and e is a unit vector along a
preferred direction, whenever this is present. In the particular case of a tubule, attention can
be restricted to any of its transverse sections, which is a plane curve c. The free energy per
unit height of the tubule then becomes

F[c] :=
∫
c

ψ(σ, ϑ) ds (2.2)

where the function ψ is a specialization of f in (2.1) to the two-dimensional setting we
consider here, s is the arc-length on c, σ is the curvature of c and ϑ is the angle between the
unit vector t tangent to c and the unit vector e, here taken to lie parallel to the plane of c.
Accordingly,

σ = ϑ ′ (2.3)

where a prime denotes differentiation with respect to s. The length � of c is regarded as fixed,
to mirror the inextensibility of lipid membranes.

Finding a criterion for the local stability of equilibrium membranes requires extending
the study in [10]. This is our main objective here. To set the scene we represent the points p
of c in the form

p(s) − o = x(s)ex + y(s)ey (2.4)

where o is the origin of the Cartesian frame shown in figure 2 and the preferred direction e
is chosen equal to ex. The unit vectors t and ν, respectively the tangent and normal to c, are
described by the formulae

t = cosϑ ex + sinϑ ey (2.5)

and

ν = −sinϑex + cosϑey (2.6)

(see figure 2). By (2.3), Frénet–Serret equations immediately follow from (2.5) and (2.6)

t′ = σν and ν ′ = −σ t (2.7)

where a prime stands for differentiation with respect to s. Since t = p′, by differentiating both
sides of (2.4), we obtain

x ′ = cosϑ and y ′ = sinϑ. (2.8)
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For a real ε sufficiently small, the curve c is changed into the curve cε by the mapping

pε = p + εu (2.9)

where u is a smooth vector field on c. To evaluate the functional F[cε] on cε it is necessary to
know how the arc-length sε and the curvature σε are related to s and σ . Using the formalism
employed in [19] we obtain, up to second order in ε,

dsε
ds

= 1 + εu′· t +
1

2
ε2(u′·ν)2 + o(ε2) (2.10)

which gives the length dilation ratio induced by (2.9). The tangent and normal unit vectors to
cε are defined as

tε := dpε

dsε
and νε := ez ∧ tε

where ez := ex ∧ey . Thus, by use of (2.9) and (2.10) we obtain

tε = t + ε(u′·ν) ν − ε2

2
(u′·ν)2t − ε2(u′· t)(u′·ν)ν + o(ε2) (2.11)

and

νε = ν − ε(u′·ν)t − ε2

2
(u′·ν)2ν + ε2(u′· t)(u′·ν)t + o(ε2). (2.12)

Inserting (2.10)–(2.12) into Frénet–Serret equation (2.7)1, we also arrive at

σε = dtε

dsε
· νε = σ + ε[(u′· ν)′ − σ(u′· t)]

+ ε2
[
σ(u′· t)2 − σ

2
(u′·ν)2 − (u′· t)(u′· ν)′ − [(u′· t)(u′·ν)]′

]
+ o(ε2).

(2.13)

Similarly, it follows from (2.5) and (2.11) that

ϑε = ϑ + εu′· ν − ε2(u′· t)(u′· ν) + o(ε2). (2.14)

An equilibrium configuration of c makes F stationary. Computing as in [11] the first
variation of F with the aid of (2.13) and (2.14), we arrive at the following equilibrium
equation: [(

∂ψ

∂σ

)′
− ∂ψ

∂ϑ

]′
− σ

(
λ + ψ − σ

∂ψ

∂σ

)
= 0 (2.15)

where λ is an arbitrary constant to be determined by enforcing the constraint on the total length
of c. Moreover, it follows from the same computation that the natural boundary conditions at
a free end point of c are

∂ψ

∂σ
= 0

∂ψ

∂ϑ
−

(
∂ψ

∂σ

)′
= 0 ψ − σ

∂ψ

∂σ
+ λ = 0. (2.16)

In the appendix we give the mathematical details needed to obtain a special quadrature of
(2.15); here we record the result for later use: away from the inflection points where σ

vanishes, (2.15) is equivalent to the following transcendental equation for the curvature

ψ − σ
∂ψ

∂σ
+ λ = µ cosϑ + η sinϑ (2.17)

with µ and η arbitrary constants. Together with the multiplier λ, the constants µ and η are to
be determined by the geometric constraints imposed on c. In general, they are the total length
� and the lengths �x and �y spanned by c along the coordinate axes. In the following section,
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equation (2.17) will prove useful in finding the equilibrium configurations of a lipid bridge
linking two parallel adhesive borders.

To study the local stability of an equilibrium configuration of c we now compute the
second variation of F . For cε to be an admissible curve like c, it must have the same total
length up to second order in ε, which amounts to requiring that∫ �

0

dsε
ds

ds = � + o(ε2). (2.18)

It is convenient to express u in the local basis {t,ν} as

u = utt + uνν (2.19)

and thence, by virtue of (2.7),

u′ = (u′
t − σuν)t + (σut + u′

ν)ν. (2.20)

By (2.10), (2.18) implies that∫ �

0
u′· t ds = 0 and

∫ �

0
(u′· ν)2 ds = 0. (2.21)

For closed curves equation (2.21)1 requires∫ �

0
σuν ds = 0. (2.22)

On the other hand, (2.21)2 is satisfied if and only if,

u′·ν = σut + u′
ν ≡ 0 (2.23)

which, in particular, implies that

ϑε = ϑ + o(ε2). (2.24)

We thus obtain the second variation of F :

δ2F(c)[u] := d2

dε2
F[cε]

∣∣∣∣
ε=0

=
∫ �

0
σ 2 ∂

2ψ

∂σ 2
(u′· t)2 ds.

Since (u′· t) is completely arbitrary at any given point of an equilibrium curve c, δ2F(c) is
positive definite if and only if,

σ 2 ∂
2ψ

∂σ 2
> 0 on c. (2.25)

Whenever this inequality is satisfied along an equilibrium configuration c, this is locally stable.
Two features of (2.25) are worth noting. First, the dependence of ψ on ϑ does not influence the
local stability; this is a consequence of the constraint (2.23) which implies (2.24). Moreover,
for a function ψ that depends only on σ , (2.25) is equivalent to requiring that ψ is strictly
convex, provided σ never vanishes on c. In particular, in the case where ψ(σ) = k

2 (σ − σ0)
2

with a constant σ 0 representing the curvature of an undistorted equilibrium configuration,
(2.25) is satisfied or not regardless of the value of σ 0. Clearly, the local stability criterion
expressed by (2.25) becomes ineffective at the inflection points of c.
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3. Equilibrium bridges

A lipid bridge is a lipid membrane linking two parallel walls, 2R apart: we regard it as an open
tubule in contact with both walls. The cross-section c of a bridge is a plane curve of length
� = 2L with one end point on each wall: within our architectural analogy, we call it an arch.
As shown in figure 2, the arches we consider are all symmetric with respect to the midplane
between the walls. The walls are adhesive, so that the arch can be either simple or stilted: a
simple arch touches each wall at a single point (see figure 3(a)), while a stilted arch adheres to
each wall along a straight upward segment, called the stilt (see figure 3(b)). In the following,
we imagine the end points of all simple arches to be fixed on the walls at some selected points
which mimic local asperities of the adhering surfaces.

Both simple and stilted arches bear a contact energy at the end points. According to the
three-dimensional model described in [13], this energy is due to the splay of the molecules
along the membrane’s border that reduces the contact between the fluid environment and the
hydrophobic tails of the molecules. Assuming that this mechanism is the same for both kinds
of arches allows us to neglect its contribution, as it plays no role in determining which is the
least energetic. A single stilt bears an adhesion energy Fa which is given the form

Fa = −wL∗ (3.1)

where w is the adhesion potential of the wall and L∗ is the height of the stilt. We assume that
both walls have one and the same adhesion potential. By symmetry, we thus study half of the
arch c, orienting it from one end point, say p0, to the upmost point p̂, as shown in figure 3(a):
the length of the half-arch is L and its span across the walls is R. Specifically, the energy
functional we consider is

F =
∫ L

0
ψ(σ, ϑ) ds − wL∗ (3.2)

subject by (2.8)1 to the condition

�x =
∫ L

0
cosϑ(s) ds = −R. (3.3)

The length L∗ is unknown and must be determined so as to minimize F ; it clearly vanishes for
a simple arch.

In particular, here we take

ψ = k

2
σ 2 (3.4)

where k > 0 is the bending rigidity of the membrane, so that, in view of (3.4), (2.17) becomes

σ =
√

2

k

/√
λ − µ cosϑ (3.5)

where λ and µ are to be determined by the constraint on the length of the arch and that on
the lateral span �x, whereas η has been set equal to zero because of the symmetry we require

of the solution. In fact, σ = −(
2
k

)1/2√
λ − µ cosϑ is an equilibrium arch too, since it solves

(2.17). However, it is symmetric with respect to (3.5) and so it represents the same bridge:
indeed, it is changed into (3.5) by turning the walls upside down. Selecting, as we do, the
arch with positive curvature is purely conventional. Equation (3.5) must be supplemented by
appropriate boundary conditions. By symmetry, for both simple and stilted arches

ϑ|p̂ = π (3.6)
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Figure 3. (a) A simple arch; ϑc is the contact angle. (b) A stilted arch; L∗ is the length of the stilt.

while the boundary conditions at the walls depend on the type of arch being considered.
Indeed, they follow from the general equilibrium equations for both the adhering contour
and the adhesive border of an open lipid membrane arrived at in [13]. An adhering contour
is every line along which a membrane detaches itself from an adhesive substrate, while an
adhesive border is the line where the membrane’s border touches the substrate. In general, as
explained in detail in [13], adhering contours and adhesive borders may fail to coincide. For
the special two-dimensional problem we tackle here, figure 3(b) illustrates the intersections p0

and p∗ of the transverse plane of the bridge with the adhesive border and the adhering contour,
respectively. Compared with a simple arch, a stilted arch has the property that the adhering
contour and the adhesive border do not coincide. In the following, we separately introduce
these boundary conditions and we find the different equilibrium profiles for the lipid bridge
that they determine.
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3.1. Simple arch

The equilibrium boundary equations for a simple arch follow from those valid along the
adhesive border of a lipid membrane on a substrate in three-dimensional space. These
conditions have already been derived for a general form of the function f in (2.1) (cf equations
(5.13) and (5.14) of [13]). Since the end points of the arch are taken to be fixed, only equation
(5.13) of [13] applies here, with ψ as in (3.4). Indeed it amounts to requiring

σ = 0 at p0. (3.7)

We define the contact angle ϑc of the membrane on the wall so that the outward unit normal
ν∗ to the wall at p0 reads

ν∗ = cosϑc ν + sinϑc t

(cf figure 3(a)). The value of ϑ at p0, that is, for s = 0, is ϑ∗ := ϑc + π
2 ; all along the half-arch

ϑ ranges in the interval [ϑ∗, π]. By (3.5) and (3.7)2, λ =µ cos ϑ∗; moreover, µ must be
positive for σ to be properly represented by equation (3.5). We thus arrive at

σ =
√

2µ

k

√
cosϑ∗ − cosϑ for ϑ ∈ [ϑ∗, π]. (3.8)

The constraints on L and �x require that

L =
√

k

2µ

∫ π

ϑ∗

1√
cosϑ∗ − cosϑ

dϑ =: gL(ϑ∗) (3.9)

R = −
√

k

2µ

∫ π

ϑ∗

cosϑ√
cosϑ∗ − cosϑ

dϑ =: gR(ϑ∗) (3.10)

where use of (2.3) has been made. A first conclusion coming from equations (3.9) and (3.10)
is that the ratio ' := gL

gR
is independent of the multiplier µ. It is easily seen that

lim
ϑ∗→ π

2
+
'(ϑ∗) = '0 and lim

ϑ∗→π−
'(ϑ∗) = 1

where

'0 :=
∫ π

π
2

1√− cosϑ
dϑ∫ π

π
2

√− cosϑdϑ
=

∫ π
2

0
1√

cosϑ
dϑ∫ π

2
0

√
cosϑ dϑ

� 2.19. (3.11)

A numerical computation shows that the function ' is monotonically decreasing in ]π2 , π[,
and so it ranges in [1, '0]. Thus, we conclude that no equilibrium simple arch exists whenever
the parameter

β := L

R
(3.12)

lies outside the interval [1, '0], whereas, for L/R within this interval, ϑ∗ is the unique root
of ' (ϑ∗) = β. For a given ϑ∗, the multiplier µ is then determined by either (3.9) or (3.10).
The graph of ' in figure 4(a) also shows that, for a prescribed value of R, the contact angle ϑc

increases from 0 to π
2 whenever L decreases from '0 R to R. It is also interesting to note that

solutions with different values of L and R, but with the same ratio L/R, can be obtained from
one another by simply rescaling the curvature.
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Figure 4. (a) The graph of ' against ϑ∗, (b) the graph of '̂ against the multiplier ν.

3.2. Stilted arch

As explained above in this section, the equilibrium boundary conditions for a stilted arch also
follow from the general equilibrium equations for both the adhering contour and the adhesive
border derived in [13].

Since by (3.2) the adhesion energy per unit length is −w, it readily follows from equation
(5.11) of [13] that

λ = w at p0. (3.13)

Similarly, equation (4.14) of [13] yields

σ ∗ =
√

2w

k
at p∗ (3.14)

where σ ∗ is the limiting value of σ at p∗ taken from the side of the free membrane, and the same
convention as in (3.5) has been adopted for the sign of the curvature. In a two-dimensional
setting, equation (3.14) was derived in [15] for flat walls and further extended in [12] to
arbitrarily curved walls. It is indeed the same as the equilibrium condition found in [18] for
axisymmetric vesicles adhering to a flat wall.

By (3.14), equation (3.8) delivers the following expression for the curvature of the
equilibrium stilted arch:

σ =
√

2w

k

√
1 + ν cosϑ for ϑ ∈

[π
2
, π

]
(3.15)
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(a) (b)

Figure 5. (a) Simple and (b) stilted arches obtained by solving the equilibrium equation.

where ν := µ

w
must be less than 1 and so chosen that the constraint on �x be satisfied. By

(3.15), (3.3) and (2.3) this constraint becomes

ξ(ν) := −
∫ π

π
2

cosϑ√
1 + ν cosϑ

dϑ = α (3.16)

where

α := R
√

2w√
k

. (3.17)

It is easily shown that ξ is a strictly increasing function satisfying

lim
ν→−∞ ξ(ν) = 0 and lim

ν→1−
ξ(ν) = +∞.

This suffices to conclude that for every positive value of α, there is a unique root να of (3.16).
Here the constraint on the length of the arch plays the role of a compatibility condition: it
must only be ensured that the length of the free arch does not exceed L, that is,

L � R

α

∫ π

π
2

1√
1 + ν cosϑ

dϑ =: L̂(ν). (3.18)

For a given α, the root να of (3.16) is admissible whenever it satisfies (3.18). Parallelling
our discussion in the preceding subsection, we plot in figure 4(b) the graph of the function
'̂(ν) := αL̂(ν)

Rξ(ν)
. This is clearly strictly decreasing, and its limits can easily be calculated with

the aid of (3.16) and (3.18):

lim
ν→−∞ '̂(ν) = '0 and lim

ν→1−
'̂(ν) = 1 (3.19)

where '0 is the same as in (3.11).
Figure 5 shows two typical equilibrium arches, corresponding to the same values of both

the total length 2L and the width 2R.

3.3. Coexistence

Our aim in this section is to conclude that simple arches can store less elastic free energy
than stilted arches. To this end we should first address the question whether simple and
stilted equilibrium arches can coexist. The answer to this question is not obvious, because
the existence of simple and stilted equilibrium arches is determined by different parameters,
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namely β in (3.12) and α in (3.17). Here we show how these parameters should be chosen for
simple and stilted arches to coexist.

For every β given in [1, '0], there is a unique root of the equation '(ϑ∗) = β, which
we denote by ϑ̂∗. Similarly, figure 4(b) shows that there is a unique value νβ of ν such that
'̂(νβ) = β. Thus, for every ν ∈ (νβ, 1), '̂(ν)R is the length of the free part of an admissible
stilted arch, as (3.18) is satisfied. The equilibrium stilted arch then corresponds to the specific
value of ν that solves (3.16). Since ξ is a monotonic function, the root of (3.16) ranges in [νβ, 1],
provided that α � ξ (νβ). Moreover, the mapping β �→ νβ is monotonically decreasing and
so is β �→ ξ(νβ). Hence, denoting by β̂ the inverse of the latter mapping, we can recast the
inequality α � ξ (νβ) in the form β � β̂(α).

Simple and stilted equilibrium arches coexist in the region of the (α, β)-plane where
β̂ � β � '0. While for β = β̂ simple and stilted arches are qualitatively different, the stilt’s
height is zero and so both arches touch each wall at a single point. It is worth noting that for a
given separation 2R between the walls and for a given length 2L of the arch, the condition for
the existence of an equilibrium stilted arch amounts to saying that the adhesion potential w of
the walls must exceed the critical value

wc := kξ2(νβ)

2R2
for β = L

R
.

Since for ψ as in (3.4) inequality (2.25) is identically satisfied, both simple and stilted
arches are locally stable. We show below that a single line inside the coexistence region marks
the global stability transition from one equilibrium arch to the other.

3.4. Stability diagram

For the energy comparison between simple and stilted arches to be meaningful, they need
not only coexist but they must also possess the same total length. We shall bear in mind this
while computing the free energy of the equilibrium arches in the coexistence region of the
(α, β)-plane. In the following, we take α as given and measure all energies in units of

√
2wk.

For β � β̂(α), with the aid of (2.3) and (3.4), we write the dimensionless free energy e
of a complete simple arch as

e =
√

k

2w

∫ π

ϑ∗
σ dϑ (3.20)

where σ is as in (3.8). Inserting this latter into (3.20) and making use of both (3.10) and (3.17),
we arrive at

e = − 1

α

∫ π

ϑ̂∗

cosϑ√
cos ϑ̂∗ − cosϑ

dϑ
∫ π

ϑ̂∗

√
cos ϑ̂∗ − cosϑ dϑ (3.21)

where ϑ̂∗ is the unique root of the equation '(ϑ∗) = β.
Similarly, by heeding that in (3.2) L∗ = L − L0 and resorting to both (3.4) and (3.8), we

compute the dimensionless free energy ê stored in a complete stilted arch as

ê =
∫ π

π
2

√
1 + ν cosϑ dϑ +

∫ π

π
2

1√
1 + ν cosϑ

dϑ − β (3.22)

where ν is the unique root of the equation ξ (ν) = α. The inequality

e � ê (3.23)

has been studied numerically for β̂(α) � β � '0: it turns out to be satisfied only in the
shadowed region in figure 6.
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Figure 6. Stability diagram. Simple arches minimize the energy in the shadowed region where
β̂ � β � βc(α), whereas stilted arches minimize the energy when βc(α) � β � '0.

Figure 7. A lipid bridge at equilibrium along a pair of misaligned walls. Here, w = γ and α = π
6 .

For every α � 0, there is a critical value βc(α) of β such that for βc(α) � β � '0 the
lipid arch with the least energy is stilted, whereas it is simple for β̂ � β � βc(α). The critical
length Lc := βcR marking this transition between two local energy minimizers decreases when
the adhesion potential w increases, showing that a shorter length suffices to make the lipid
membrane creep on the walls when these become more adhesive.

4. Misaligned walls

To conclude our study on lipid bridges, we consider here a problem where a bridge adheres to
a pair of walls that fail to be parallel and the ends of the bridge are subject to opposite forces
of equal magnitude γ , oriented as in figure 7. The energy Fb associated with the membrane’s
border can no longer be regarded as constant: it is proportional to the distance between the
end points of the curve c:

Fb = γ�x = −γ

∫ L

0
cosϑ(s) ds.

Adding Fb to the energy functional in (3.2) should prevent the end points of c from gliding on
the walls.
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Formally, we can still employ the definition of F in (3.2), provided that ψ is changed
to ψ̃ := ψ − γ cosϑ . Thus, the equilibrium boundary condition for a stilted arch in (3.13)
becomes

λ = w − γ sin α (4.1)

since ϑ = π
2 +α at the end point p0. Moreover, taking ψ as in (3.4), we arrive at the following

representation for the equilibrium curve c:

σ 2 = 2

k
(w − γ (sinα + cosϑ)). (4.2)

It follows from (4.2) that σ vanishes at ϑ0 := arccos
(

w
γ

− sinα
)

, provided that

w

γ
− sinα � 1. (4.3)

This is indeed a necessary condition for an equilibrium curve c to exist, because whenever it
is violated ϑ is prevented from attaining π and so (3.6) cannot be satisfied.

As is clear from figure 7, along an equilibrium curve σ starts negative on the wall at
ϑ = π

2 + α, it then changes its sign as ϑ crosses ϑ0. As expected, (4.3) gives a critical value
of γ below which the lipid membrane would glide on the walls. When (4.3) is satisfied, an
equilibrium curve exists whenever L exceeds the critical value Lc given by

Lc = 2
∫ π

2 +α

ϑ0

1

σ
dϑ +

∫ π

π
2 +α

1

σ
dϑ

where σ is the positive root of (4.2).

Appendix

Here we show how equation (2.17) can be obtained by quadrature; we then employ it to solve
in an alternative way two classical Euler’s problems.

When the energy per unit length ψ depends only on the curvature σ , equation (2.15) is a
special case of the equilibrium equations for a space curve, which reads as

(
dψ

dσ

)′′
− σψ − (

τ 2 − σ 2
) dψ

dσ
− σλ = 0

τ

(
dψ

dσ

)′
+

(
τ

dψ

dσ

)′
= 0

(A1)

where τ is the torsion of c (see pp 50–53 of [2]). As observed by Radon, it is possible to
solve (A1) by quadrature (see pp 53–55 of [2]), retracing the equilibrium curve via successive
integrations. The solution, however, is given in a very implicit way, so that it is often difficult
to appreciate its qualitative features. For a plane curve, when ψ also depends on ϑ , a better
insight into this equilibrium problem can be gained by another special quadrature. It is possible
to regard σ as a function of ϑ , at least whenever σ does not vanish. By (2.3), and denoting
the differentiation with respect to ϑ by a superimposed dot, we easily arrive at[(

∂ψ

∂σ

)′
− ∂ψ

∂ϑ

]′
= σ

[(
∂ψ

∂σ

)••

+

(
∂ψ

∂σ

)•

σ̇ −
(
∂ψ

∂ϑ

)•]
= −σ f̈

where

f (ϑ) :=
(
ψ − σ

dψ

dσ
+ λ

)
(A2)
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and use has been made of the identity

ψ̇ = ∂ψ

∂ϑ
+
∂ψ

∂σ
σ̇ .

Thus, equation (2.15) takes the form

σ(f̈ + f ) = 0

which by (A2) implies equation (2.17), where µ and η are arbitrary constants and σ �= 0.
This is the analytical counterpart of the method employed in [10, 11] that rephrases the

variational problem for F in terms of the focal curve associated with c. The only difference
is that in the equilibrium equation arrived at in [10] the constants λ, µ and η are all zero, as
in the variations of c performed there the end points of an isolated perturbed arc glide along
c, and so all geometric constraints are locally relaxed. A glance at (2.8) suffices to show that
the right-hand side of (2.17) actually reconciles the geometric and analytic approaches to this
equilibrium problem, as fixing the end points of a perturbed arc a on c—possibly the whole
of c—just amounts to prescribing the values of the integrals∫

a

cosϑ ds and
∫
a

sinϑ ds.

Equation (2.17) is equivalent to (2.15) but, at variance with this, it makes it easy to determine
all null Lagrangians for F . In fact,

ϕ0(σ, ϑ) := g(ϑ)σ − λ + µ cosϑ + ν sinϑ

with g any smooth function and λ, µ and ν arbitrary constants, is clearly the most general
energy density that renders (2.17) identically satisfied, and so adding it to any functionψ would
not affect the equilibrium equation for c, as could also be checked by a direct computation in
(2.15). Below, we apply equation (2.17) to two classical equilibrium problems.

Elastica

The first problem is Euler’s elastica. Consider an inextensible, flexible rod welded upright
to a horizontal wall at one end and subject to the downward vertical load P = −Pey at the
opposite end (see figure 8).

The energy functional for the curve c that represents the rod is

F[c] =
∫ L

0

1

2
kσ 2 ds + Py(L) (A3)

which, by (2.8)2, can be given the form (2.2) with

ψ = 1
2kσ

2 + P sinϑ. (A4)

Since the only geometric constraint on c is its length L, we set both µ and η equal to zero in
equation (2.17); for ψ as in (A4), this equation yields

σ =
√

2

k
(λ + P sinϑ) (A5)
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Figure 8. A flexible rod loaded at one end point.

with π
2 � ϑ � ϑ0, for the solution with positive curvature depicted in figure 8 (the other

solution, which has opposite curvature, represents a curve symmetric to this). Equation (A5)
represents the first integral of equation (2.15), which in the present setting reads

kσ ′′ + 1
2kσ

3 − λσ = 0. (A6)

As expected, this equation does not depend on P because sin ϑ is a null Lagrangian for F .
It is worth noting that (A6) and the classical equilibrium equation for the elastica (cf e.g. (8)
on p 401 of [5]) have the same solutions, as they both enjoy the same first integral (cf (9)
of [5]). Here the natural boundary conditions (2.16) are to be enforced at s = L. Combining
(A4), (A5) and (2.16)1, we conclude that λ = −P sin ϑ0, while both (2.16)1,2 are identically
satisfied along c. We then readily determine ϑ0, by requiring that

L =
∫ ϑ0

π
2

1

σ
dϑ =

√
k

2P

∫ ϑ0

π
2

1√
sinϑ − sinϑ0

dϑ =
√

k

P
K

(
1

2

√
1 − sinϑ0

)
(A8)

where K is the complete elliptic integral of the first kind. Since K is a strictly increasing
function, there is precisely one root ϑ0 of (A8), provided that

L �
√

k

P
K(0) =

√
k

P

π

2

which delivers the classical critical load Pc = kπ2

4L2 for the rod to start bending.
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Cycloid

Euler also posed the problem of finding a plane curve c such that the area swept out by its radii
of curvature has minimum value (see e.g. [3], p 66). The energy functional for this problem is

F[c] =
∫ L

0

1

σ
ds.

In the absence of the constraint on the length of c, equation (2.17) yields

σ = 1

µ cosϑ + η sinϑ

which setting η = µ tan α transforms into the equation for a cycloid:

σ = cosα

µ cos(ϑ − α)
.
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